\(\int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx\) [60]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 284 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b c \sqrt {\frac {d+e x}{d+\frac {e}{\sqrt {-c^2}}}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{\left (-c^2\right )^{3/2} \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {4 b d \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \sqrt {1+c^2 x^2} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \]

[Out]

2*(a+b*arccsch(c*x))*(e*x+d)^(1/2)/e+4*b*c*EllipticF(1/2*(1-x*(-c^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-c^2)^(1/2)/(
c^2*d-e*(-c^2)^(1/2)))^(1/2))*(c^2*x^2+1)^(1/2)*((e*x+d)/(d+e/(-c^2)^(1/2)))^(1/2)/(-c^2)^(3/2)/x/(1+1/c^2/x^2
)^(1/2)/(e*x+d)^(1/2)-4*b*d*EllipticPi(1/2*(1-x*(-c^2)^(1/2))^(1/2)*2^(1/2),2,2^(1/2)*(e/(d*(-c^2)^(1/2)+e))^(
1/2))*(c^2*x^2+1)^(1/2)*((e*x+d)*(-c^2)^(1/2)/(d*(-c^2)^(1/2)+e))^(1/2)/c/e/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2
)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6425, 1588, 958, 733, 430, 947, 174, 552, 551} \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b c \sqrt {c^2 x^2+1} \sqrt {\frac {d+e x}{\frac {e}{\sqrt {-c^2}}+d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{\left (-c^2\right )^{3/2} x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}-\frac {4 b d \sqrt {c^2 x^2+1} \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}} \]

[In]

Int[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e + (4*b*c*Sqrt[(d + e*x)/(d + e/Sqrt[-c^2])]*Sqrt[1 + c^2*x^2]*Ellipti
cF[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (-2*Sqrt[-c^2]*e)/(c^2*d - Sqrt[-c^2]*e)])/((-c^2)^(3/2)*Sqrt[1 + 1
/(c^2*x^2)]*x*Sqrt[d + e*x]) - (4*b*d*Sqrt[(Sqrt[-c^2]*(d + e*x))/(Sqrt[-c^2]*d + e)]*Sqrt[1 + c^2*x^2]*Ellipt
icPi[2, ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (2*e)/(Sqrt[-c^2]*d + e)])/(c*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d
 + e*x])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 552

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d/c)*x^2]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 947

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-c/
a, 2]}, Dist[Sqrt[1 + c*(x^2/a)]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]),
 x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 958

Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[g/e, Int[1/(S
qrt[f + g*x]*Sqrt[a + c*x^2]), x], x] + Dist[(e*f - d*g)/e, Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]), x
], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0]

Rule 1588

Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Dist[x^(2*n*Fra
cPart[p])*((a + c/x^(2*n))^FracPart[p]/(c + a*x^(2*n))^FracPart[p]), Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x^
(2*n))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] &&  !IntegerQ[p] &&  !IntegerQ[q] &&
PosQ[n]

Rule 6425

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a +
b*ArcCsch[c*x])/(e*(m + 1))), x] + Dist[b/(c*e*(m + 1)), Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x]
, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {(2 b) \int \frac {\sqrt {d+e x}}{\sqrt {1+\frac {1}{c^2 x^2}} x^2} \, dx}{c e} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {\left (2 b \sqrt {\frac {1}{c^2}+x^2}\right ) \int \frac {\sqrt {d+e x}}{x \sqrt {\frac {1}{c^2}+x^2}} \, dx}{c e \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {\left (2 b \sqrt {\frac {1}{c^2}+x^2}\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {\frac {1}{c^2}+x^2}} \, dx}{c \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (2 b d \sqrt {\frac {1}{c^2}+x^2}\right ) \int \frac {1}{x \sqrt {d+e x} \sqrt {\frac {1}{c^2}+x^2}} \, dx}{c e \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {\left (2 b d \sqrt {1+c^2 x^2}\right ) \int \frac {1}{x \sqrt {1-\sqrt {-c^2} x} \sqrt {1+\sqrt {-c^2} x} \sqrt {d+e x}} \, dx}{c e \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (4 b \sqrt {-c^2} \sqrt {\frac {d+e x}{d-\frac {\sqrt {-c^2} e}{c^2}}} \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {-c^2} e x^2}{c^2 \left (d-\frac {\sqrt {-c^2} e}{c^2}\right )}}} \, dx,x,\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )}{c^3 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {d+e x}{d+\frac {e}{\sqrt {-c^2}}}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {\left (4 b d \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {d+\frac {e}{\sqrt {-c^2}}-\frac {e x^2}{\sqrt {-c^2}}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{c e \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {d+e x}{d+\frac {e}{\sqrt {-c^2}}}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {\left (4 b d \sqrt {1+c^2 x^2} \sqrt {1+\frac {e \left (-1+\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {1-\frac {e x^2}{\sqrt {-c^2} \left (d+\frac {e}{\sqrt {-c^2}}\right )}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{c e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ & = \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {d+e x}{d+\frac {e}{\sqrt {-c^2}}}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {4 b d \sqrt {1+c^2 x^2} \sqrt {1-\frac {e \left (1-\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 8.45 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.08 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\frac {2 \left (a e (d+e x)-\frac {b \left (e+\frac {d}{x}\right ) \left (-c e x \text {csch}^{-1}(c x)+\frac {\sqrt {2} \sqrt {1+i c x} \left (-e^2 (i+c x) \sqrt {\frac {c (d+e x)}{c d-i e}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {-\frac {e (i+c x)}{c d-i e}}\right ),\frac {i c d+e}{2 e}\right )+c d (i c d+e) \sqrt {-\frac {e (i+c x)}{c d-i e}} \sqrt {\frac {c e (i+c x) (d+e x)}{(i c d+e)^2}} \operatorname {EllipticPi}\left (1+\frac {i c d}{e},\arcsin \left (\sqrt {-\frac {e (i+c x)}{c d-i e}}\right ),\frac {i c d+e}{2 e}\right )\right )}{\sqrt {1+\frac {1}{c^2 x^2}} \sqrt {-\frac {e (i+c x)}{c d-i e}} (c d+c e x)}\right )}{c}\right )}{e^2 \sqrt {d+e x}} \]

[In]

Integrate[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]

[Out]

(2*(a*e*(d + e*x) - (b*(e + d/x)*(-(c*e*x*ArcCsch[c*x]) + (Sqrt[2]*Sqrt[1 + I*c*x]*(-(e^2*(I + c*x)*Sqrt[(c*(d
 + e*x))/(c*d - I*e)]*EllipticF[ArcSin[Sqrt[-((e*(I + c*x))/(c*d - I*e))]], (I*c*d + e)/(2*e)]) + c*d*(I*c*d +
 e)*Sqrt[-((e*(I + c*x))/(c*d - I*e))]*Sqrt[(c*e*(I + c*x)*(d + e*x))/(I*c*d + e)^2]*EllipticPi[1 + (I*c*d)/e,
 ArcSin[Sqrt[-((e*(I + c*x))/(c*d - I*e))]], (I*c*d + e)/(2*e)]))/(Sqrt[1 + 1/(c^2*x^2)]*Sqrt[-((e*(I + c*x))/
(c*d - I*e))]*(c*d + c*e*x))))/c))/(e^2*Sqrt[d + e*x])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 5.38 (sec) , antiderivative size = 395, normalized size of antiderivative = 1.39

method result size
derivativedivides \(\frac {2 \sqrt {e x +d}\, a +2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(395\)
default \(\frac {2 \sqrt {e x +d}\, a +2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(395\)
parts \(\frac {2 a \sqrt {e x +d}}{e}+\frac {2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(398\)

[In]

int((a+b*arccsch(c*x))/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/e*((e*x+d)^(1/2)*a+b*((e*x+d)^(1/2)*arccsch(c*x)+2/c*(-(I*c*e*(e*x+d)+c^2*d*(e*x+d)-c^2*d^2-e^2)/(c^2*d^2+e^
2))^(1/2)*((I*c*e*(e*x+d)-c^2*d*(e*x+d)+c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2)*(EllipticF((e*x+d)^(1/2)*((c*d+I*e)*
c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2))-EllipticPi((e*x+d)^(1/2)*((c*d+I*e)*c/(
c^2*d^2+e^2))^(1/2),1/(c*d+I*e)/c*(c^2*d^2+e^2)/d,(-(I*e-c*d)*c/(c^2*d^2+e^2))^(1/2)/((c*d+I*e)*c/(c^2*d^2+e^2
))^(1/2)))/((c^2*(e*x+d)^2-2*c^2*d*(e*x+d)+c^2*d^2+e^2)/c^2/e^2/x^2)^(1/2)/x/((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2)
))

Fricas [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/sqrt(e*x + d), x)

Sympy [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{\sqrt {d + e x}}\, dx \]

[In]

integrate((a+b*acsch(c*x))/(e*x+d)**(1/2),x)

[Out]

Integral((a + b*acsch(c*x))/sqrt(d + e*x), x)

Maxima [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

b*(2*sqrt(e*x + d)*log(sqrt(c^2*x^2 + 1) + 1)/e + integrate(2*(c^2*e*x^2 + c^2*d*x)/((c^2*e*x^2 + e)*sqrt(c^2*
x^2 + 1)*sqrt(e*x + d) + (c^2*e*x^2 + e)*sqrt(e*x + d)), x) - integrate(((e*log(c) + 2*e)*c^2*x^2 + 2*c^2*d*x
+ e*log(c) + (c^2*e*x^2 + e)*log(x))/((c^2*e*x^2 + e)*sqrt(e*x + d)), x)) + 2*sqrt(e*x + d)*a/e

Giac [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/sqrt(e*x + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{\sqrt {d+e\,x}} \,d x \]

[In]

int((a + b*asinh(1/(c*x)))/(d + e*x)^(1/2),x)

[Out]

int((a + b*asinh(1/(c*x)))/(d + e*x)^(1/2), x)